Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.575
Filtrar
1.
Trends Neurosci ; 47(4): 239-240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514350

RESUMO

A recent study by Cheung, Pauler, Koppensteiner et al. combining lineage tracing with single-cell RNA sequencing (scRNA-seq) has revealed unexpected features of the developing superior colliculus (SC). Extremely multipotent individual progenitors generate all types of SC neurons and glial cells that were found to localize in a non-predetermined pattern, demonstrating a remarkable degree of unpredictability in SC development.


Assuntos
Neurônios , Colículos Superiores , Humanos , Colículos Superiores/fisiologia , Neurônios/fisiologia , Neuroglia , Neurogênese
2.
Vision Res ; 217: 108374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452566

RESUMO

There is no satisfactory neurally-based theory as to how vertebrates that lack a neocortex discriminate even simple geometric shapes. In fishes, an intact optic tectum is necessary for such discriminations, but physiological studies of it have found nothing like the hierarchically arranged feature detecting neurons of mammalian visual cortex. Here, a neural model attempts a solution by basing shape discrimination upon the responses of only those elementary detectors (e.g. of size) that are within a focus of attention, formed by a winner-take-all arrangement of retinotopically mapped units representing tectal pyramidal cells. While this relatively primitive mechanism could recognize an object irrespective of position in space, it fails to distinguish patterns that differ only in their features' spatial relationships. The model's solution - imitating goldfish that naturally attend to the top of shapes - is to shift attention to the edges of a shape by spatially offsetting inputs to the pyramidal neurons, effected by the torus longitudinalis and its prolific synapses on pyramidal dendrites. The model's shape discrimination was compared to an extensive behavioral study using shapes with points and projections. In one test series fish were sensitive to the relative number of points on the tops of shapes. In another, fish were trained to discriminate points on the sides. By using different offset connections and only one elementary feature detector for small dark spots, the model successfully emulated the two sets of goldfish data, as judged by significant correlations between model response and fish discrimination.


Assuntos
Carpa Dourada , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Carpa Dourada/fisiologia , Neurônios , Percepção Visual , Mamíferos
3.
Proc Natl Acad Sci U S A ; 121(12): e2317218121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483997

RESUMO

Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. The source of direction selectivity in the SC is contested, and its contributions to predation have not been tested experimentally. Here, we use type-specific cell removal to show that narrow-field (NF) neurons in the mouse SC guide predation. In vivo recordings demonstrate that direction-selective responses of NF cells are independent of recently reported stimulus-edge effects. Monosynaptic retrograde tracing reveals that NF cells receive synaptic input from direction-selective ganglion cells. When we eliminate direction selectivity in the retina of adult mice, direction-selective responses in the SC, including in NF cells, are lost. However, eliminating retinal direction selectivity does not affect the hunting success or strategies of mice, even when direction selectivity is removed after mice have learned to hunt, and despite abolishing the gaze-stabilizing optokinetic reflex. Thus, our results identify the retinal source of direction selectivity in the SC. They show that NF cells in the SC guide predation, an essential spatial orienting task, independent of their direction selectivity, revealing behavioral multiplexing of complex neural feature preferences and highlighting the importance of feature-selective manipulations for neuroethology.


Assuntos
Neurônios , Comportamento Predatório , Camundongos , Animais , Neurônios/fisiologia , Colículos Superiores/fisiologia , Retina , Vias Visuais/fisiologia
4.
Nat Commun ; 15(1): 2158, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461293

RESUMO

Innate defensive responses, though primarily instinctive, must also be highly adaptive to changes in risk assessment. However, adaptive changes can become maladaptive, following severe stress, as seen in posttraumatic stress disorder (PTSD). In a series of experiments, we observed long-term changes in innate escape behavior of male mice towards a previously non-threatening stimulus following an adverse shock experience manifested as a shift in the threshold of threat response. By recording neural activity in the superior colliculus (SC) while phototagging specific responses to afferents, we established the crucial influence of input arriving at the SC from the medial prefrontal cortex (mPFC), both directly and indirectly, on escape-related activity after adverse shock experience. Inactivating these specific projections during the shock effectively abolished the observed changes. Conversely, optogenetically activating them during encounters controlled escape responses. This establishes the necessity and sufficiency of those specific mPFC inputs into the SC for adverse experience related changes in innate escape behavior.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Colículos Superiores , Camundongos , Masculino , Animais , Colículos Superiores/fisiologia , Córtex Pré-Frontal/fisiologia
5.
Curr Biol ; 34(6): 1222-1233.e7, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38417446

RESUMO

Neurons in the mouse superior colliculus ("colliculus") are arranged in ordered spatial maps. While orientation-selective (OS) neurons form a concentric map aligned to the center of vision, direction-selective (DS) neurons are arranged in patches with changing preferences across the visual field. It remains unclear whether these maps are a consequence of feedforward input from the retina or local computations in the colliculus. To determine whether these maps originate in the retina, we mapped the local and global distribution of OS and DS retinal ganglion cell axon boutons using in vivo two-photon calcium imaging. We found that OS boutons formed patches that matched the distribution of OS neurons within the colliculus. DS boutons displayed fewer regional specializations, better reflecting the organization of DS neurons in the retina. Both eyes convey similar orientation but different DS inputs to the colliculus, as shown in recordings from retinal explants. These data demonstrate that orientation and direction maps within the colliculus are independent, where orientation maps are likely inherited from the retina, but direction maps require additional computations.


Assuntos
Retina , Colículos Superiores , Camundongos , Animais , Colículos Superiores/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Campos Visuais , Axônios , Vias Visuais/fisiologia
6.
Nat Commun ; 15(1): 849, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346973

RESUMO

The visual continuity illusion involves a shift in visual perception from static to dynamic vision modes when the stimuli arrive at high temporal frequency, and is critical for recognizing objects moving in the environment. However, how this illusion is encoded across the visual pathway remains poorly understood, with disparate frequency thresholds at retinal, cortical, and behavioural levels suggesting the involvement of other brain areas. Here, we employ a multimodal approach encompassing behaviour, whole-brain functional MRI, and electrophysiological measurements, for investigating the encoding of the continuity illusion in rats. Behavioural experiments report a frequency threshold of 18±2 Hz. Functional MRI reveal that superior colliculus signals transition from positive to negative at the behaviourally-driven threshold, unlike thalamic and cortical areas. Electrophysiological recordings indicate that these transitions are underpinned by neural activation/suppression. Lesions in the primary visual cortex reveal this effect to be intrinsic to the superior colliculus (under a cortical gain effect). Our findings highlight the superior colliculus' crucial involvement in encoding temporal frequency shifts, especially the change from static to dynamic vision modes.


Assuntos
Ilusões , Colículos Superiores , Ratos , Animais , Colículos Superiores/fisiologia , Visão Ocular , Percepção Visual/fisiologia , Vias Visuais/fisiologia
7.
J Neurosci Methods ; 405: 110095, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403001

RESUMO

BACKGROUND: The retinotopic map property of the superior colliculus (SC) is a reliable indicator of visual functional changes in rodents. Electrophysiological mapping of the SC using a single electrode has been employed for measuring visual function in rat and mouse disease models. Single electrode mapping is highly laborious requiring long-term exposure to the SC surface and prolonged anesthetic conditions that can adversely affect the mapping data. NEW METHOD: To avoid the above-mentioned issues, we fabricated a fifty-six (56) electrode multi-electrode array (MEA) for rapid and reliable visual functional mapping of the SC. Since SC is a dome-shaped structure, the array was made of electrodes with dissimilar tip lengths to enable simultaneous and uniform penetration of the SC. RESULTS: SC mapping using the new MEA was conducted in retinal degenerate (RD) Royal College of Surgeons (RCS) rats and rats with focal retinal damage induced by green diode laser. For SC mapping, the MEA was advanced into the SC surface and the visual activities were recorded during full-filed light stimulation of the eye. Based on the morphological examination, the MEA electrodes covered most of the exposed SC area and penetrated the SC surface at a relatively uniform depth. MEA mapping in RCS rats (n=9) demonstrated progressive development of a scotoma in the SC that corresponded to the degree of photoreceptor loss. MEA mapping in the laser damaged rats demonstrated the presence of a scotoma in the SC area that corresponded to the location of retinal laser injury. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: The use of MEA for SC mapping is advantageous over single electrode recording by enabling faster recordings and reducing anesthesia time. This study establishes the feasibility of the MEA technique for rapid and efficient SC mapping, particularly advantageous for evaluating therapeutic effects in retinal degenerate rat disease models.


Assuntos
Escotoma , Colículos Superiores , Humanos , Ratos , Animais , Camundongos , Colículos Superiores/fisiologia , Retina/fisiologia , Luz , Eletrodos
8.
Brain Res ; 1828: 148774, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244758

RESUMO

Cat superior colliculus (SC) neurons commonly combine information from different senses, which facilitates event detection and localization. Integration in SC multisensory neurons depends on the spatial and temporal relationships between cross-modal cues. Here, we revealed the parallel process of short-term plasticity in the temporal/spatial integration process during adulthood that adapts multisensory integration to reliable changes in environmental conditions. Short-term experience alters the temporal preferences of SC multisensory neurons, and this short-term plasticity in the temporal/spatial integration process is limited to changes in cross-modal timing (a factor commonly induced by events at different distances from the receiver). However, this plasticity was not evident in response to changes in the cross-modal spatial configuration.


Assuntos
Sensação , Colículos Superiores , Colículos Superiores/fisiologia , Estimulação Acústica , Estimulação Luminosa , Sensação/fisiologia , Neurônios/fisiologia , Percepção Auditiva/fisiologia , Percepção Visual/fisiologia
9.
J Neurophysiol ; 131(3): 548-555, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38292000

RESUMO

It has been suggested that, during difficult visual search tasks involving time pressure and multiple saccades, inhibitory tagging helps to facilitate efficient saccade target selection by reducing responses to objects in the scene once they have been searched and rejected. The superior colliculus (SC) is a midbrain structure involved in target selection, and recent findings suggest an influence of inhibitory tagging on SC activity. Precisely how, and by how much, inhibitory tagging influences target selection by SC neurons, however, is unclear. The purpose of this study, therefore, was to characterize and quantify the influence of inhibitory tagging on target selection in the SC. Rhesus monkeys performed a visual search task involving time pressure and multiple saccades. Early in the fixation period between saccades in the context of this task, a subset of SC neurons reliably discriminated the stimulus selected as the next saccade goal, consistent with a role in target selection. Discrimination occurred earlier and was more robust, however, when unselected stimuli in the search array had been previously fixated on the same trial. This indicates that inhibitory tagging both speeds and strengthens saccade target selection in the SC during multisaccade search. The results provide constraints on models of target selection based on SC activity.NEW & NOTEWORTHY An important aspect of efficient behavior during difficult, time-limited visual search tasks is the efficient selection of sequential saccade targets. Inhibitory tagging, i.e., a reduction of neural activity associated with previously fixated objects, may help to facilitate such efficient selection by modulating the selection process in the superior colliculus (SC). In this study, we characterized and quantified this modulation and found that, indeed, inhibitory tagging both speeds and strengthens target selection in the SC.


Assuntos
Colículos Superiores , Percepção Visual , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Movimentos Sacádicos , Neurônios/fisiologia , Estimulação Luminosa/métodos
10.
PLoS Biol ; 22(1): e3002375, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236815

RESUMO

Detecting imminent collisions is essential for survival. Here, we used high-resolution fMRI at 7 Tesla to investigate the role of attention and consciousness for detecting collision trajectory in human subcortical pathways. Healthy participants can precisely discriminate collision from near-miss trajectory of an approaching object, with pupil size change reflecting collision sensitivity. Subcortical pathways from the superior colliculus (SC) to the ventromedial pulvinar (vmPul) and ventral tegmental area (VTA) exhibited collision-sensitive responses even when participants were not paying attention to the looming stimuli. For hemianopic patients with unilateral lesions of the geniculostriate pathway, the ipsilesional SC and VTA showed significant activation to collision stimuli in their scotoma. Furthermore, stronger SC responses predicted better behavioral performance in collision detection even in the absence of awareness. Therefore, human tectofugal pathways could automatically detect collision trajectories without the observers' attention to and awareness of looming stimuli, supporting "blindsight" detection of impending visual threats.


Assuntos
Percepção de Movimento , Pulvinar , Humanos , Percepção de Movimento/fisiologia , Colículos Superiores/fisiologia , Imageamento por Ressonância Magnética , Pulvinar/diagnóstico por imagem , Estimulação Luminosa , Vias Visuais/fisiologia
11.
J Comp Neurol ; 532(2): e25565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047381

RESUMO

Here, we describe the postnatal development of retinal projections in galagos. Galagos are of special interest as they represent the understudied strepsirrhine branch (galagos, pottos, lorises, and lemurs) of the primate radiations. The projections of both eyes were revealed in each galago by injecting red or green cholera toxin subunit B (CTB) tracers into different eyes of galagos ranging from postnatal day 5 to adult. In the dorsal lateral geniculate nucleus, the magnocellular, parvocellular, and koniocellular layers were clearly labeled and identified by having inputs from the ipsilateral or contralateral eye at all ages. In the superficial layers of the superior colliculus, the terminations from the ipsilateral eye were just ventral to those from the contralateral eye at all ages. Other terminations at postnatal day 5 and later were in the pregeniculate nucleus, the accessory optic system, and the pretectum. As in other primates, a small retinal projection terminated in the posterior part of the pulvinar, which is known to project to the temporal visual cortex. This small projection from both eyes was most apparent on day 5 and absent in mature galagos. A similar reduction over postnatal maturation has been reported in marmosets, leading to the speculation that early retinal inputs to the pulvinar are responsible for the activation and early maturation of the middle temporal visual area, MT.


Assuntos
Galago , Pulvinar , Animais , Vias Visuais/fisiologia , Colículos Superiores/fisiologia , Corpos Geniculados
12.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37968118

RESUMO

Neurons in the nucleus raphe interpositus have tonic activity that suppresses saccadic burst neurons (BNs) during eye fixations, and that is inhibited before and during saccades in all directions (omnipause neurons, OPNs). We have previously demonstrated via intracellular recording and anatomical staining in anesthetized cats of both sexes that OPNs are inhibited by BNs in the medullary reticular formation (horizontal inhibitory BNs, IBNs). These horizontal IBNs receive monosynaptic input from the caudal horizontal saccade area of the superior colliculus (SC), and then produce monosynaptic inhibition in OPNs, providing a mechanism to trigger saccades. However, it is well known that the neural circuits driving horizontal components of saccades are independent from the circuits driving vertical components. Thus, our previous results are unable to explain how purely vertical saccades are triggered. Here, we again apply intracellular recording to show that a disynaptic vertical IBN circuit exists, analogous to the horizontal circuit. Specifically, we show that stimulation of the SC rostral vertical saccade area produces disynaptic inhibition in OPNs, which is not abolished by midline section between the horizontal IBNs. This excludes the possibility that horizontal IBNs could be responsible for the OPN inhibition during vertical saccades. We then show that vertical IBNs in the interstitial nucleus of Cajal, which receive monosynaptic input from rostral SC, are responsible for the disynaptic inhibition of OPNs. These results indicate that a similarly functioning SC-IBN-OPN circuit exists for both the horizontal and vertical oculomotor pathways. These two IBN-mediated circuits are capable of triggering saccades in any direction.Significance Statement Saccades shift gaze to objects of interest, moving their image to the central retina, where it is maintained for detailed examination (fixation). During fixation, high gain saccade burst neurons (BNs) are tonically inhibited by omnipause neurons (OPNs). Our previous study showed that medullary horizontal inhibitory BNs (IBNs) activated from the caudal superior colliculus (SC) inhibit tonically active OPNs in order to initiate horizontal saccades. The present study addresses the source of OPN inhibition for vertical saccades. We find that OPNs monosynaptically inhibit vertical IBNs in the interstitial nucleus of Cajal during fixation. Those same vertical IBNs are activated by the rostral SC, and inhibit OPN activity to initiate vertical saccades.


Assuntos
Neurônios , Movimentos Sacádicos , Neurônios/fisiologia , Tronco Encefálico/fisiologia , Movimentos Oculares , Colículos Superiores/fisiologia , Fixação Ocular
13.
Neurosci Bull ; 40(3): 310-324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37302108

RESUMO

Parvalbumin-positive retinal ganglion cells (PV+ RGCs) are an essential subset of RGCs found in various species. However, their role in transmitting visual information remains unclear. Here, we characterized PV+ RGCs in the retina and explored the functions of the PV+ RGC-mediated visual pathway. By applying multiple viral tracing strategies, we investigated the downstream of PV+ RGCs across the whole brain. Interestingly, we found that the PV+ RGCs provided direct monosynaptic input to PV+ excitatory neurons in the superficial layers of the superior colliculus (SC). Ablation or suppression of SC-projecting PV+ RGCs abolished or severely impaired the flight response to looming visual stimuli in mice without affecting visual acuity. Furthermore, using transcriptome expression profiling of individual cells and immunofluorescence colocalization for RGCs, we found that PV+ RGCs are predominant glutamatergic neurons. Thus, our findings indicate the critical role of PV+ RGCs in an innate defensive response and suggest a non-canonical subcortical visual pathway from excitatory PV+ RGCs to PV+ SC neurons that regulates looming visual stimuli. These results provide a potential target for intervening and treating diseases related to this circuit, such as schizophrenia and autism.


Assuntos
Colículos Superiores , Vias Visuais , Camundongos , Animais , Colículos Superiores/fisiologia , Células Ganglionares da Retina/fisiologia , Retina
14.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38123991

RESUMO

Maintaining precise synaptic contacts between neuronal partners is critical to ensure the proper functioning of the mammalian central nervous system (CNS). Diverse cell recognition molecules, such as classic cadherins (Cdhs), are part of the molecular machinery mediating synaptic choices during development and synaptic maintenance. Yet, the principles governing neuron-neuron wiring across diverse CNS neuron types remain largely unknown. The retinotectal synapses, connections from the retinal ganglion cells (RGCs) to the superior collicular (SC) neurons, offer an ideal experimental system to reveal molecular logic underlying synaptic choices and formation. This is due to the retina's unidirectional and laminar-restricted projections to the SC and the large databases of presynaptic RGC subtypes and postsynaptic SC neuronal types. Here, we focused on determining the role of Type II Cdhs in wiring the retinotectal synapses. We surveyed Cdhs expression patterns at neuronal resolution and revealed that Cdh13 is enriched in the wide-field neurons in the superficial SC (sSC). In either the Cdh13 null mutant or selective adult deletion within the wide-field neurons, there is a significant reduction of spine densities in the distal dendrites of these neurons in both sexes. Additionally, Cdh13 removal from presynaptic RGCs reduced dendritic spines in the postsynaptic wide-field neurons. Cdh13-expressing RGCs use differential mechanisms than αRGCs and On-Off Direction-Selective Ganglion Cells (ooDSGCs) to form specific retinotectal synapses. The results revealed a selective transneuronal interaction mediated by Cdh13 to maintain proper retinotectal synapses in vivo.


Assuntos
Células Ganglionares da Retina , Sinapses , Animais , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Colículos Superiores/fisiologia , Dendritos/fisiologia , Caderinas/genética , Caderinas/metabolismo , Mamíferos
15.
Neuron ; 112(2): 230-246.e11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38096816

RESUMO

The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.


Assuntos
Células-Tronco Neurais , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Neurônios/metabolismo , Neuroglia/metabolismo , Células-Tronco Neurais/metabolismo , Linhagem da Célula/fisiologia , Mamíferos
16.
Sci Rep ; 13(1): 21730, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066070

RESUMO

Primate superior colliculus (SC) neurons exhibit visual feature tuning properties and are implicated in a subcortical network hypothesized to mediate fast threat and/or conspecific detection. However, the mechanisms through which SC neurons contribute to peripheral object detection, for supporting rapid orienting responses, remain unclear. Here we explored whether, and how quickly, SC neurons detect real-life object stimuli. We presented experimentally-controlled gray-scale images of seven different object categories, and their corresponding luminance- and spectral-matched image controls, within the extrafoveal response fields of SC neurons. We found that all of our functionally-identified SC neuron types preferentially detected real-life objects even in their very first stimulus-evoked visual bursts. Intriguingly, even visually-responsive motor-related neurons exhibited such robust early object detection. We further identified spatial frequency information in visual images as an important, but not exhaustive, source for the earliest (within 100 ms) but not for the late (after 100 ms) component of object detection by SC neurons. Our results demonstrate rapid and robust detection of extrafoveal visual objects by the SC. Besides supporting recent evidence that even SC saccade-related motor bursts can preferentially represent visual objects, these results reveal a plausible mechanism through which rapid orienting responses to extrafoveal visual objects can be mediated.


Assuntos
Neurônios , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos , Primatas , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
17.
Nat Commun ; 14(1): 7358, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963894

RESUMO

Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.


Assuntos
Lobo Frontal , Colículos Superiores , Camundongos , Animais , Colículos Superiores/fisiologia , Lobo Frontal/fisiologia , Neurônios/fisiologia , Tálamo
18.
Nat Commun ; 14(1): 7592, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996414

RESUMO

In motor control, the brain not only sends motor commands to the periphery, but also generates concurrent internal signals known as corollary discharge (CD) that influence sensory information processing around the time of movement. CD signals are important for identifying sensory input arising from self-motion and to compensate for it, but the underlying mechanisms remain unclear. Using whole-cell patch clamp recordings from neurons in the zebrafish optic tectum, we discovered an inhibitory synaptic signal, temporally locked to spontaneous and visually driven locomotion. This motor-related inhibition was appropriately timed to counteract visually driven excitatory input arising from the fish's own motion, and transiently suppressed tectal spiking activity. High-resolution calcium imaging revealed localized motor-related signals in the tectal neuropil and the upstream torus longitudinalis, suggesting that CD enters the tectum via this pathway. Together, our results show how visual processing is suppressed during self-motion by motor-related phasic inhibition. This may help explain perceptual saccadic suppression observed in many species.


Assuntos
Movimentos Sacádicos , Peixe-Zebra , Animais , Percepção Visual/fisiologia , Locomoção , Colículos Superiores/fisiologia , Vias Visuais/fisiologia
19.
Nat Commun ; 14(1): 7278, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949869

RESUMO

In the mammalian visual system, the ventral lateral geniculate nucleus (vLGN) of the thalamus receives salient visual input from the retina and sends prominent GABAergic axons to the superior colliculus (SC). However, whether and how vLGN contributes to fundamental visual information processing remains largely unclear. Here, we report in mice that vLGN facilitates visually-guided approaching behavior mediated by the lateral SC and enhances the sensitivity of visual object detection. This can be attributed to the extremely broad spatial integration of vLGN neurons, as reflected in their much lower preferred spatial frequencies and broader spatial receptive fields than SC neurons. Through GABAergic thalamocollicular projections, vLGN specifically exerts prominent surround suppression of visuospatial processing in SC, leading to a fine tuning of SC preferences to higher spatial frequencies and smaller objects in a context-dependent manner. Thus, as an essential component of the central visual processing pathway, vLGN serves to refine and contextually modulate visuospatial processing in SC-mediated visuomotor behaviors via visually-driven long-range feedforward inhibition.


Assuntos
Corpos Geniculados , Neurônios , Camundongos , Animais , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Tálamo , Vias Visuais/fisiologia , Colículos Superiores/fisiologia , Mamíferos
20.
Nat Commun ; 14(1): 7418, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973798

RESUMO

Retinotopy, like all long-range projections, can arise from the axons themselves or their targets. The underlying connectivity pattern, however, remains elusive at the fine scale in the mammalian brain. To address this question, we functionally mapped the spatial organization of the input axons and target neurons in the female mouse retinocollicular pathway at single-cell resolution using in vivo two-photon calcium imaging. We found a near-perfect retinotopic tiling of retinal ganglion cell axon terminals, with an average error below 30 µm or 2° of visual angle. The precision of retinotopy was relatively lower for local neurons in the superior colliculus. Subsequent data-driven modeling ascribed it to a low input convergence, on average 5.5 retinal ganglion cell inputs per postsynaptic cell in the superior colliculus. These results indicate that retinotopy arises largely from topographically precise input from presynaptic cells, rather than elaborating local circuitry to reconstruct the topography by postsynaptic cells.


Assuntos
Retina , Colículos Superiores , Camundongos , Animais , Feminino , Colículos Superiores/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Axônios/fisiologia , Terminações Pré-Sinápticas , Vias Visuais , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...